

2010 NATIONAL MODEL CONSTRUCTION CODES

Radon

Frank Lohmann & Morched Zeghal NRC Canadian Codes Centre February 2011

National Research Council Canada

Conseil national de recherches Canada

Introduction

- Presentation is part of a series on the 2010 National Model Construction Codes
- Model codes developed by Canadian Commission on Building and Fire Codes
- These codes must be adopted by provincial/territorial authorities to become law

Key Messages

- Technical changes for radon address:
 - New Health Canada guideline for acceptable indoor concentration of radon
 - Basic protection of all houses and buildings
 - Specific provisions to address future radon mitigation in new housing and small buildings
- Information for existing houses and buildings
 - CMHC
 - Health Canada
 - EPA

Outline

- General information on radon
- Development of proposed changes
- Proposed changes
 - Part 5
 - Part 6
 - Part 9

What is Radon?

- Radioactive gas, naturally occurring
- Produced by the decay of uranium
- During decay alpha particles are given off
- Inhalation of particles damages lungs

Where Does Radon Come From?

Illustration from: Radon - A Guide for Canadian Homeowners (CMHC –2007)

Why Should We Pay Attention?

Average worldwide exposure to radiation sources

- Health Canada estimates
 1,900 lung cancer deaths
 per year are related to radon
- We spend more time indoors, including basements
- Tighter buildings
- Some geographical areas are known for high risk of radon in the ground
- Health Canada reduced the permissible Canadian Action Level from 200 Bq/m³ to 200 Bq/m³

How can Radon be Measured?

- Health Canada radon test
 - Minimum 1 month during heating season
 - Average annual limit $\leq 200 \text{ Bq/m}^3$
- Testing for codes ...
 - not possible during construction
 - not enforceable at time of construction
 - not practical/economical for builders
- Responsibility to test
 - ... rests with the owner

Task Group on Radon

- Mandate
 - Validate/review current requirements
 - Is protection by current construction adequate
 - ... for 800 Bq/m³?
 - ... for 200 Bq/m³?
 - What can be done to make current requirements more effective?
 - Develop changes on means of protection from radon ingress
 - Do not consider
 - Diffusion of radon through materials small contributor
 - Soil testing pre-construction no correlation to indoor concentration
 - Radon emanation from building materials small contributor

Task Group on Radon

- Mini-data collection in high-risk areas
 - 3 high-risk locations tested in BC, MB, NS
 - 90+ newly constructed houses
 - Testing for 6 weeks in March/April 2008
- Two locations (60+ houses)
 - Current practice:
 - Sealing perimeter and penetrations as well as specific inspections
 <u>NOT common practice</u>
 - Results:
 - Increased levels of radon, many above 800 Bq/m³

Task Group on Radon

- One location (29 houses)
 - Current practice:
 - Sealing perimeter and penetrations by builders required
 - Inspections by officials common
 - Results:
 - Acceptable levels of radon (current guideline)
 - 50% of houses were within new guideline of 200 Bq/m³
 - Houses over 200 Bq/m³ had issues in the inspection protocol
- Conclusion
 - Current code provisions, when applied and inspected, provide acceptable <u>basic protection</u>

- Large buildings (design requirements) 2005 NBC
 - ... as a system
 - Air barrier systems (Part 5)
 - Drainage & waterproofing (Part 5)
 - Ventilation systems (Part 6)
 - Air contaminants (Part 6)
 - Excavation (Part 4)
- Specifically on radon:
 - One sentence in Appendix Note in Part 5

- Part 5 2005 NBC
- Control of Air Leakage (performance targets)
 - ... provide & maintain acceptable conditions
 - ... minimize condensation and precipitation ingress
 - ... avoid ice damming
 - ... not compromise operation of building services

Appendix Note

 An air barrier system may be required in components and assemblies in contact with the ground to control the transfer of soil gases such as radon and methane

- Part 5 **2010 NBC**
- Control of Air Leakage (performance targets)
 - ... provide & maintain acceptable conditions
 - ... minimize condensation & precipitation ingress
 - ... avoid ice damming
 - ... not compromise operation of building services
 - <u>Minimize the ingress of airborne radon from the ground with an aim</u> to controlling the indoor radon concentration to an acceptable level

- Part 5 **2010 NBC**
- Appendix Note
 - ...
 - In addition to an air barrier system, other measures may be required to reduce the radon concentration to a level below the guideline specified by Health Canada
 - Further information on protection from radon ingress can be found in:
 - "Radon: A Guide for Canadian Homeowners" (CMHC/HC)
 - <u>"Guide for Radon Measurements in Public Buildings (Schools,</u> <u>Hospitals, Care Facilities, Detention Centres)</u>" (HC)
 - <u>EPA/625/R-92/016, "Radon Prevention in the Design and</u> <u>Construction of Schools and Other Large Buildings"</u>

- Part 6 2005 NBC
- Good Engineering Practice
 - Heating, ventilating and air-conditioning systems, including mechanical refrigeration equipment, shall be designed, constructed and installed in conformance with good engineering practice:
 - ASHRAE Handbooks and Standards, HRAI Digest, Hydronics Institute Manuals, NFPA Standards, SMACNA Manuals, Industrial Ventilation Manual published by the ACGIH, CSA-B214, Hydronic Heating Systems, CSA-Z317.2, HVAC Systems in Health Care Facilities

- Part 6 **2010 NBC**
- Good Engineering Practice
 - Heating, ventilating and air-conditioning systems, including mechanical refrigeration equipment, shall be designed, constructed and installed in conformance with good engineering practice:
 - ... and, <u>EPA/625/R-92/016</u>, "Radon Prevention in the Design and <u>Construction of Schools and Other Large Buildings</u>"

- Part 6 **2010 NBC**
- New Appendix Note
- ...
- <u>Radon Control</u>
 - Measures may be necessary to reduce the radon concentration to a level below the guideline specified by Health Canada
 - Further information on reducing the indoor concentration of radon can be found in the following Health Canada publications:
 - <u>"Guide for Radon Measurements in Public Buildings (Schools,</u> <u>Hospitals, Care Facilities, Detention Centres)"</u>
 - <u>"Radon: A Guide for Canadian Homeowners (CMHC/HC)</u>

- Housing and small buildings (prescriptive) 2005 NBC
 - ... as a system:
 - Excavation (9.12.)
 - Foundation wall and floor material (concrete) (9.3.)
 - Floors-on-ground (9.16.)
 - Dampproofing (9.13.)
 - Air barrier systems (9.25.)
 - Ventilation (9.32.)
- Specifically:
 - Protection from all soil gases including radon was addressed in **Subsection 9.13.4**.

- Part 9 Basic Protection 2005 NBC
- Applies to all housing and small buildings:
 - Air barrier requirements in 9.13.
 - For below-ground walls
 - Slab perimeter sealed to air barrier of wall
 - All penetrations (mostly pipes) sealed
 - Sump pit cover required (9.14.)
 - Requirements for ground cover (9.18.)
 - Exemption from fill under slab (9.16.)

- Part 9 Basic Protection 2005 NBC
 - Air-seal floor drains

- Part 9 Basic Protection 2005 NBC
 - Air-seal hollow masonry

- Part 9 Basic Protection 2005 NBC
 - Seal slab perimeter

Part 9 – Application – 2010 NBC

- Address Soil Gas Protection

- Part 9 Basic Protection 2010 NBC
- Applies to all housing and small buildings:
 - Air barrier requirements moved from 9.13. to 9.25.
 - For below-ground walls
 - Polyethylene soil gas barrier required under slab
 - Slab perimeter sealed to air barrier of the wall
 - All penetrations (mostly pipes) sealed
 - Sump pit cover required to be airtight (9.14.)
 - <u>Consistent</u> requirements for ground cover (9.18.)
 - Exemption from fill under slab <u>deleted</u> (9.16.)

- Part 9 Basic Protection 2010 NBC
 - Airtight sump pit covers

- Part 9 Specific Provisions 2005 NBC
 - Exemption
 - Where it can be demonstrated that radon is not a problem
 - Article 9.13.4.6. Subfloor Depressurization
 - as an option for dwelling units only
 - Granular fill under slab
 - Capped, labeled pipe
 - Bottom end located near centre of slab
 - Top end ready for active system
 - Testing required
 - Activating of system required on exceeding limit
 - Polyethylene under slab
 - as an option for dwelling units
 - required for all other buildings

- Part 9 Specific Provisions 2010 NBC
 - Exemption
 - Where it can be demonstrated that radon is not a problem
 - Article 9.13.4.6. Subfloor Depressurization
 - as an option for dwelling units only
 - Granular fill under slab
 - Capped, labeled pipe
 - Bottom end located near centre of slab
 - Top end ready for active system
 - Testing required
 - Activating of system required on exceeding limit
 - Polyethylene under slab
 - as an option for dwelling units
 - required for all other buildings

- Part 9 Specific Provisions 2010 NBC
 - Exemption
 - <u>Unheated crawl spaces</u>
 - Accessible heated crawl spaces without slab
 - <u>Rough-in for</u> subfloor depressurization
 - Deemed-to-comply prescriptive solution
 - Granular fill under slab
 - Capped, labeled pipe
 - Bottom end located near centre of slab
 - Top end ready for active system
 - Performance solution
 - Can be used for structural slabs, innovative radon systems, other fills

- Other Changes to Part 9 (Radon) 2010 NBC
 - Updated various Appendix Notes
 - Protection from depressurization
 - Deleted radon as a trigger for make-up air
 - Exempted radon fans from being counted as exhaust devices
 - Risk of freezing foundations
 - Moved from code into Appendix

- Other Changes to Part 9 (Radon) 2010 NBC
 - New Appendix Notes and Illustrations

Summary

- Radon is a health risk
 - Health Canada establishes that risk
- Buildings work as a system
 - Basic protection (soil gas)
 - Specific provisions (radon)
- NBC requirements
 - For housing and small buildings
 - Large buildings
- NBC applies to new construction only
- CMHC, HC, EPA provide guidance for existing buildings
- Effective solutions are available

More on Radon ...

- CMHC Guide
 <u>http://www.cmhc-schl.gc.ca/odpub/pdf/61945.pdf</u>
- Health Canada Environmental and Workplace Health
 http://www.hc-sc.gc.ca/ewh-semt/radiation/radon/index-eng.php
- U.S. Environmental Protection Agency
 <u>http://www.epa.gov/radon</u>

www.nationalcodes.ca

Questions? Send them to us at <u>codes@nrc-cnrc.gc.ca</u>

Thank you!